6,331 research outputs found

    ENHANCEMENT OF WOUND HEALING BY TOPICAL APPLICATION OF EPIDERMAL GROWTH FACTOR IN ANIMAL MODEL

    Get PDF
    Objective: Wound healing is a complex process of biological events involving re-epithelialization and granulation that are mainly mediated by several endogenously released growth factors such as epidermal growth factor. This work was undertaken to study the effects of various doses of locally applied recombinant human epidermal growth factor (rhEGF) on wound healing in rats. Methods: Recombinant human EGF consists of 53 amino acids. In vitro, rhEGF promoted its obvious cell growth and proliferation when added to cultured 3T3 cells using MTT assay. In the test groups, in vivo, wound sites were given daily with a solution containing 2, 5, 10, 50ug of EGF spray and 40ug of EGF ointment, respectively. Results: Current study presented evidence that a significant decreased healing time in wound was observed in all rhEGF groups when compared with the control, and reach to its maximal efficacy at 10ug/ml of rhEGF spray. The rate of wound closure was over 50% at initial 3 days of treatment. Treatment with rhEGF significantly decreased the length of time to over 50% healing by approximately 4-5 days, and that to 70% and 90% healing by approximately 3-4 days and 3 days, respectively. A stimulatory, dose-dependent effect of EGF on wound healing was observed with increased hEGF concentration. In toxicological group, higher doses of 100ug/ml of rhEGF spray was applied by local dorsal incision in rats. Moreover, a dose of single 200ug, single 300ug or 300ug within 24 hrs of subcutaneous and intramuscular rhEGF injection was given respectively. There were no significant adverse side effects. Conclusion: Current study recommended a proposal of clinical drug doses in wound at 2µg, 5 µg and 10 µg /ml of rhEGF spray, and 10 µg and even higher 40 µg rhEGF/g of ointment. The results indicated that prepared rhEGF by genetic engineering in current study is safe, and is emerging in clinical effective use in assisting wound healing time.                             Peer Review History: Received 8 January 2020;   Revised 12 February; Accepted 2 March, Available online 15 March 2020 Academic Editor: Dr. Ali Abdullah Al-yahawi, Al-Razi university, Department of Pharmacy, Yemen, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.5/10 Average Peer review marks at publication stage: 8.5/10 Reviewer(s) detail: Asmaa Ahmed Mohamed Ahmed Khalifa, Pharos University, Alexandria, Egypt, [email protected] Dr. Sabah Hussien El-Ghaiesh , Tanta University, Egypt, [email protected] Similar Articles: POTENTIAL OF SNAKEHEAD FISH (OPHIOCEPHALUS STRIATUS) IN ACCELERATING WOUND HEALIN

    Edge Shear Flows and Particle Transport near the Density Limit in the HL-2A Tokamak

    Full text link
    Edge shear flow and its effect on regulating turbulent transport have long been suspected to play an important role in plasmas operating near the Greenwald density limit nG n_G . In this study, equilibrium profiles as well as the turbulent particle flux and Reynolds stress across the separatrix in the HL-2A tokamak are examined as nG n_G is approached in ohmic L-mode discharges. As the normalized line-averaged density nˉe/nG \bar{n}_e/n_G is raised, the shearing rate of the mean poloidal flow ωsh \omega_{\rm sh} drops, and the turbulent drive for the low-frequency zonal flow (the Reynolds power PRe \mathcal{P}_{Re} ) collapses. Correspondingly, the turbulent particle transport increases drastically with increasing collision rates. The geodesic acoustic modes (GAMs) gain more energy from the ambient turbulence at higher densities, but have smaller shearing rate than low-frequency zonal flows. The increased density also introduces decreased adiabaticity which not only enhances the particle transport but is also related to a reduction in the eddy-tilting and the Reynolds power. Both effects may lead to the cooling of edge plasmas and therefore the onset of MHD instabilities that limit the plasma density

    Assessment of intervention measures for the 2003 SARS epidemic in Taiwan by use of a back-projection method

    Get PDF
    OBJECTIVES. To reconstruct the infection curve for the 2003 severe acute respiratory syndrome (SARS) epidemic in Taiwan and to ascertain the temporal changes in the daily number of infections that occurred during the course of the outbreak. METHOD. Back-projection method. RESULTS. The peaks of the epidemic correspond well with the occurrence of major infection clusters in the hospitals. The overall downward trend of the infection curve after early May corresponds well to the date (May 10) when changes in the review and classification procedure were implemented by the SARS Prevention and Extrication Committee. CONCLUSION. The major infection control measures taken by the Taiwanese government over the course of the SARS epidemic, particularly those regarding infection control in hospitals, played a crucial role in containing the outbreak. © 2007 by The Society for Healthcare Epidemiology of America. All rights reserved.published_or_final_versio

    Haemodynamic changes in visceral hybrid repairs of type III and type V thoracoabdominal aortic aneurysms

    Get PDF
    The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs. Two patients, one with a type III and the other with a type V TAAA, underwent successful elective and emergency visceral hybrid repairs, respectively. Flow patterns and haemodynamic parameters were analysed using reconstructed pre- and post-operative CT scans. Both type III and type V TAAAs showed highly disturbed flow patterns with varying helicity values preoperatively within their respective aneurysms. Low time-averaged wall shear stress (TAWSS) and high endothelial cell action potential (ECAP) and relative residence time (RRT) associated with thrombogenic susceptibility was observed in the posterior aspect of both TAAAs preoperatively. Despite differing bypass configurations in the elective and emergency repairs, both treatment options appear to improve haemodynamic performance compared to preoperative study. However, we observed reduced TAWSS in the right iliac artery (portending a theoretical risk of future graft and possibly limb thrombosis), after the elective type III visceral hybrid repair, but not the emergency type V repair. We surmise that this difference may be attributed to the higher neo-bifurcation of the aortic stent graft in the type III as compared to the type V repair. Our results demonstrate that CFD can be used in complicated visceral hybrid repair to yield potentially actionable predictive insights with implications on surveillance and enhanced post-operative management, even in patients with complicated geometrical bypass configurations

    Ultrafast Laser-Scanning Time-Stretch Imaging at Visible Wavelengths

    Get PDF
    published_or_final_versio

    Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide

    Get PDF
    Deep UV transparent thin films have recently attracted considerable attention owing to their potential in UV and organic-based optoelectronics. Here, we report the achievement of a deep UV transparent and highly conductive thin film based on Si-doped Ga_{2}O_{3} (SGO) with high conductivity of 2500 S/cm. The SGO thin films exhibit high transparency over a wide spectrum ranging from visible light to deep UV wavelength and, meanwhile, have a very low work-function of approximately 3.2 eV. A combination of photoemission spectroscopy and theoretical studies reveals that the delocalized conduction band derived from Ga 4s orbitals is responsible for the Ga_{2}O_{3} films’ high conductivity. Furthermore, Si is shown to act as an efficient shallow donor, yielding high mobility up to approximately 60 cm^{2}/Vs. The superior optoelectronic properties of SGO films make it a promising material for use as electrodes in high-power electronics and deep UV and organic-based optoelectronic devices

    Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays

    Get PDF
    Silicon dioxide (SiO2) is a prominent candidate for radiative cooling applications due to its low absorption in solar wavelengths (0.25-2.5 µm) and exceptional stability. However, its bulk phonon-polariton band results in a strong reflection peak in the atmospheric transparency window (8-13 µm), making it difficult to meet the requirements for sub-ambient passive radiative cooling. Herein, we demonstrate that SiO2 micropillar arrays can effectively suppress infrared reflection at 8-13 µm and enhance the infrared emissivity by optimizing the micropillar array structure. We created a pattern with a height, spacing, and diameter of approximately 1.45 µm, 0.15 µm, and 0.35 µm, respectively, on top of a bulk SiO2 substrate using reactive ion etching. The resulting surface phonon coupling of the micropillar array led to an increase in the thermal emissivity from 0.79 to 0.94. Outdoor tests show that the SiO2 cooler with an optimized micropillar array can generate an average temperature drop of 5.5 °C throughout the daytime underneath an irradiance of 843.1 W/m^2 at noon. Furthermore, the micropillar arrays endow the SiO2 cooler with remarkable hydrophobic properties, attributed to the formation of F/C compounds introduced during the etching process. Finally, we also replicated the micropillar pattern onto the surface of industrial optical solar reflectors (OSRs), demonstrating similar emissivity and hydrophobicity enhancements. Our findings revealed an effective strategy for modifying the thermal management features of durable SiO2 layers, which can be harnessed to cool OSRs and other similar sky-facing devices

    Designer SiO2 Metasurfaces for Efficient Passive Radiative Cooling

    Get PDF
    In recent years, an increasing number of passive radiative cooling materials are proposed in the literature, with several examples relying on the use of silica (SiO2) due to its unique stability, non-toxicity, and availability. Nonetheless, due to its bulk phonon-polariton band, SiO2 presents a marked reflection peak within the atmospheric transparency window (8-13 mu m), leading to an emissivity decrease that poses a challenge to fulfilling the criteria for sub-ambient passive radiative cooling. Thus, the latest developments in this field are devoted to the design of engineered SiO2 photonic structures, to increase the cooling potential of bulk SiO2 radiative coolers. This review seeks to identify the most effective photonic design and fabrication strategies for SiO2 radiative emitters by evaluating their cooling efficacy, as well as their scalability, providing an in-depth analysis of the fundamental principles, structural models, and results (both numerical and experimental) of various types of SiO2 radiative coolers
    • …
    corecore